Military & Aerospace

No Place To Hide: Latest Developments in Air Defence Missiles
Star Rating Loader Please wait...
Issue Vol. 30.4 Oct-Dec 2015 | Date : 28 Mar , 2016

MBDA's ASRAAM firing from Typhoon

The Indian Air Force (IAF) already sports a variety of AAMs on its combat aircraft. And in the years to come, much of the IAF’s fighter fleet may be equipped with the Defence Research and Development Organisation (DRDO)-designed Astra AAM (see box). Trials of the Astra are now in progress.

When it comes to short-range or WVR engagements, radar-guided missiles are less useful than IR “fire-and-forget” missiles. For instance, Raytheon’s AIM-9X Block II – the USA’s most advanced WVRAAM – uses its data link, thrust vectoring agility and advanced IIR seeker to hit targets even behind the launch aircraft. It is also true dual-use, that is, it can be employed against airborne or ground targets – a highly desirable quality.

The Infra-Red Imaging System – Tail/Thrust Vector Controlled (IRIS-T) is a new WVRAAM manufactured by Diehl BGT Defence with a maximum range of 25 km. Missiles like IRIS-T are gradually replacing the older MBDA AIM-132 Advanced Short Range Air-to-Air Missile (ASRAAM) for WVR engagements.

Defence from the Surface

SAMs, the standard Air Defence (AD) weapons are of essentially three types – heavy long-range systems that are fixed or semi-mobile, medium-range vehicle-mounted systems that can fire on the move and short-range Man-Portable AD systems (MANPADS). Like AAMs, SAMs too can be further classified according to their guidance systems: radar or other means.

With prices of combat aircraft escalating by the day, a new trend is emerging that involves refurbishing existing aircraft and upgrading their airborne radar and AD missiles.

Indeed SAMs and AAMs have many common features and some manufacturers are putting this to good use. For instance, the Common Anti-Air Modular Missile (CAMM) series is a family of SAMs and AAMs developed by MBDA for the UK. CAMM has a high degree of commonality with MBDA’s AIM-132 ASRAAM, apart from the seeker – Infra-Red (IR) in ASRAAM and Radio Frequency (RF) in CAMM. CAMM will be part of the British Future Low-Altitude Air Defence System (FLAADS), which covers both maritime and land AD.

Israel has always emphasized AD capability. Although its Arrow SAM system is many years old, it has benefitted from continuous hardware and software improvements to stay abreast of emerging ballistic threats. The Arrow-2, jointly produced by Israel Aircraft Industries (IAI) and Boeing, can engage ballistic missiles in the upper atmosphere. IAI is also developing a higher altitude variant, the Arrow-3, which will intercept incoming missiles outside the atmosphere. The Israelis would thus be able to attempt two or three interceptions against each incoming missile. Arrow has a directed fragmentation warhead.

Similarly, the Medium Extended Air Defence System (MEADS) will soon replace the Patriot which has been the mainstay of US AD capability. MEADS will also replace the Hawk in Germany and Italy’s Nike Hercules missiles. MEADS is intended to neutralise enemy aircraft, cruise missiles, UAVs and ballistic missiles.

The Russian S-400 Triumf is a medium/long-range mobile SAM system with the longest range in the world – around 400 km. It is useful against all types of combat and support aircraft, UAVs, cruise missiles and ballistic missiles. It is even capable of engaging stealth fighters up to around 100 km. Its effective EW capability, high mobility and ability to move at short notice also give it high survivability.

Of concern to the IAF is the likelihood of China acquiring the S-400 to supplement its existing Russian-built S-300 and indigenous HQ-9 long-range SAM system. However, recent reports indicate that India too may acquire 12 S-400 systems. These would be the first line of defence against distant intruders while the indigenous DRDO Akash (see box) would take on targets at much closer ranges.

The S-500 is another future Russian SAM designed mainly as an Anti-Ballistic Missile (ABM). It can intercept ICBMs and hit AWACS, AEW and jamming aircraft. Its range may be as much as 600 km in the ABM role and 400 km against aircraft.

Another missile being developed by DRDO and IAI is a yet to be named long-range SAM (up to 70 km) for the Indian Navy. It is under testing and production is expected to commence next year. Medium-range versions of the same missile for the Indian Army and IAF are also expected.

Russia and China too are unlikely to build all fifth-generation fighter fleet.

Laser AD and More Missiles

In air combat, numerical superiority generally wins over quality, meaning much larger forces of inferior aircraft may swamp even superior forces while suffering surprisingly small losses. That is why a blind quest for more technologically advanced AD aircraft without corresponding emphasis on their weapon systems is counterproductive.

With prices of combat aircraft escalating by the day, a new trend is emerging that involves refurbishing existing aircraft and upgrading their airborne radar and AD missiles. For instance, Boeing is pursuing an “F-15 2040C” series of upgrades of the fourth-generation F-15C Eagle air superiority fighter. The upgraded version would double its AAMs to 16 and feature improved electronics. A Raytheon-manufactured Active Electronically Scanned Array (AESA) radar, and a new EW suite, would help enhance its lethality and survivability. This upgraded aircraft would complement the fifth-generation F-22 Raptor and F-35 Lightning II far more economically than an entirely new plane. While the advanced stealth jets venture forward to detect and “paint” targets, the more vulnerable F-15 would remain safely behind at the maximum range of its BVRAAMs and launch them when ordered.

Russia and China too are unlikely to build all fifth-generation fighter fleet. Rather, for many years, derivatives of the Sukhoi Su-27 Flanker air superiority fighter with vastly improved avionics, engines, airframe and weaponry will constitute the bulk of their tactical air fleets.

With missiles proliferating rapidly, countermeasure technology assumes added importance…

In years to come, Directed Energy Weapons (DEW) including High-Power Laser (HPL) and High-Power Microwave (HPM) systems are likely to be an important part of the AD arsenal. In December 2014, the US Navy deployed a Laser Weapon System (LaWS) aboard the USS Ponce, a transport ship operating in the Persian Gulf. LaWS can attack small boats and Unmanned Aerial Vehicles (UAV) by merging six commercial cutting lasers and pointing them simultaneously at the same target. Its destructive effect is obtained by burning a hole in a critical part of the target’s skin or its electronics and causing it to crash.

The USAF plans to soon mount such laser weapons on its AC-130 gunships, on UAVs and perhaps between 2020 and 2015 on fighters like the F-22 and F-35. Initially, they will be purely defensive, that is, to ward off incoming missiles. Later they will focus on offensive operations against other aircraft, functioning like AAMs.

Lurking Peril

In the past, air combat was an all-pervasive part of air operations. However, aerial engagements are rare nowadays. That is why although BVRAAMs and WVRAAMs have been sold by the thousand over the last couple of decades and remain a prime requisite of fifth-generation fighters, only a tiny percentage have actually been launched.

The US in particular is now concentrating more on readiness to take on Russia and China than on counter-terrorism operations…

It is tempting to fire a BVR missile at the adversary without putting oneself in harm’s way. However, experience shows that many pilots do not have faith in their Identify-Friend-or-Foe (IFF) equipment and prefer to get closer for positive identification rather than risk downing a friendly aircraft. In addition, BVR missiles have largely failed to live up to their hype and statistically have achieved only a small fraction of total recorded aerial kills. WVR missiles have delivered much better results and even guns have recorded a significant number of air victories. Therefore, an air force that neglects close combat training and weapons and overemphasises BVR capability does so at its peril.

Similarly, the threat posed by modern SAMs imposes caution on attacking aircraft, but very few SAMs have actually been fired in anger. Indeed, it appears that AAMs and SAMs are deployed mainly for their deterrent value. Thanks to SAMs, air-to-ground attacks have become more difficult and are more likely to be attempted from standoff ranges.

With missiles proliferating rapidly, countermeasure technology assumes added importance. For instance, China and Russia have reportedly developed advanced Digital Radio Frequency Memory (DRFM) jammers that memorise an incoming radar signal and radiate it back to the sender, thus seriously degrading the launch radar’s performance. These jammers can blind the small radars fitted on Western BVRAAMs like the AIM-120. Thus the carriage of extra missiles on an air superiority aircraft assumes even greater importance, because at least some missiles can get through. Another technique is to increase the range of Western IR-guided missiles like the AIM-9X to make them useful as a BVR-type weapon if the AIM-120 is effectively jammed.

http://www.lancerpublishers.com/catalog/product_info.php?products_id=1533

Click to buy

Indeed, Western air forces know there is a vast difference between the asymmetric warfare they have grown accustomed to and having to deal with equally matched opponents in contested airspace. The US in particular is now concentrating more on readiness to take on Russia and China than on counter-terrorism operations. That should accelerate the progress of AD missile technology. The rapid advances in aircraft, sensor and weapon technology and the proliferation of modern weaponry globally represents an increasing threat to pilots and planes alike. Even as some manufacturers boost the capability of their missile systems, others pursue counter-measure technology to deal with emerging missile threats. It is a cat-and-mouse game that makes the outcome of any live engagement hard to predict. Ultimately it boils down to which side has better equipment, training and tactics.

1 2
Rate this Article
Star Rating Loader Please wait...
The views expressed are of the author and do not necessarily represent the opinions or policies of the Indian Defence Review.

About the Author

Gp Capt Joseph Noronha

Former MiG-21 Pilot and experienced IAF instructor before he turned to writing articles on aviation.

More by the same author

Post your Comment

2000characters left