Military & Aerospace

Drones: The Game Changers in Future Wars
Star Rating Loader Please wait...
By S Gopal
Issue Vol. 30.1 Jan-Mar 2015 | Date : 22 Sep , 2015

Dark Sword

The State Oceanic Administration, part of the Coast Guard, has announced the setting up of 11 UAV bases, one in each of China’s coastal provinces expected to be operational by 2015. It completed trials in 2011 that used UAVs in Liaoning Province to take aerial imagery of 980 square miles of sea area. Reportedly, the PLAAF has already begun to deploy UAVs for missions over the East China Sea, notably to an air base near Shuimen, Fujian. More recently in September 2013, the PLA Navy began UAV flights near the Senkaku Islands.

The ASN-15 is a UAV similar to the US RQ Raven, a small, man-portable system for basic battlefield ISTAR duties. The ASN-209 medium altitude and medium endurance UAV comparable to the US ScanEagle, a larger ISR system than the Raven with up to 20 hours of endurance for long-range battlefield and maritime surveillance. The ASN-209 is probably the same aircraft as the “Silver Eagle” which took part in naval exercises over the South China Sea in 2011.

The Yilong has already successfully entered the international market as a low-cost Chinese system…

A PLA Navy frigate has been photographed in 2012 operating what was probably one of the 18 Camcopter S-100s China acquired from Austrian company Schiebel, supposedly intended for civilian use. Another Vertical Takeoff and Landing Tactical Unmanned Aircraft (VTUAV), the SVU-200, made its first flight late last year, while a third unmanned helicopter, the V750, recently entered civilian service. The PLA Navy is exploring the possible applications of VTUAVs including their use in anti-submarine warfare.

The Yilong/Wing Loong “Pterodactyl”, built by the Chengdu Aircraft Design and Research Institute, and the China Aerospace Science and Technology Corporation’s (CASC) CH-4 are similar to the US MQ-1 Predator and MQ-9 Reaper drones which are Medium Altitude, Long Endurance (MALE) UAVs best known for conducting lethal operations in Pakistan and elsewhere. The Yilong is primarily regarded as a Reaper-style strike aircraft while the CH-4 is more of a multi-role aircraft that will be deployed by civilian agencies as well as by the military, for surveillance purposes though it can also be weaponised. These two UAVs appear to be in the same class as the CH-91, built by Aerospace Long March International, an ISTAR system already under production and the more advanced CH-92, which is due to enter production soon.

The Chengdu Aircraft Industry Corporation is developing the Soaring Eagle, an analogue of the RQ-4 Global Hawk, Washington’s HALE UAV. China is thought to be working on a stealth UAV called the Wing Blade, similar to the US RQ-170 Sentinel and a stealth UCAV called the Dark Sword, analogous to X-74B. China is also experimenting with a new generation of nano UAVs, like the Black Hornet micro-helicopter with the British Army.

The Predator-style CH-4 in particular is being pushed for export. The system is part of CASC’s CH “Rainbow” family of drones and is understood to be an upgraded version of the CH-3 UAV, which China has already sold to Pakistan. The CH-4 carries four missiles and has an endurance of 30 hours. The Yilong has already successfully entered the international market as a low-cost Chinese system. A US Predator costs around $4.5 million while a Reaper is closer to $10 million for countries that manage to obtain clearance to buy them. Chinese claim that their equivalent UAVs cost less than $1 million making them a highly affordable for a host of international customers, especially those unable or unwilling to source US and Israeli technology for reasons of cost or otherwise.

At present, Pakistan has an indigenous UAV capability but its drones cannot launch guided missiles…

As per a retired Deputy Chief of the PLA General Staff, China is likely to field over 1,000 medium and large-sized UAVs in the coming years. The US has also been accusing China of using cyber espionage to steal drone technology from the US in developing military drones. Manager of threat intelligence at FireEye, Darien Kindlund, who monitored the espionage, said that the Chinese campaign is the largest to be solely focused on drone technology. There has been official confirmation that drone technology had been stolen by hackers.

In recent years, control of multiple UAVs flying in formation has become a challenging subject for inter-disciplinary research while autonomous formation flight is an important research area in the aerospace field. The main motivation is the wide range of possible military and civilian applications, where UAV formations could provide a low-cost and efficient alternative to existing technology.

China sees drones as a platform to wage war at the “highest level of conflict”. Chinese documents suggest that the PLA envisions “attacking US aircraft carrier battle groups with swarms of multi-mission UAVs with initial waves of decoy drones followed by swarms of strike drones that would often be shot down during their mission.” China has undertaken a number of studies on the employment of UAVs to hit US aircraft carriers.

There are several public sector companies involved in developing UAVs in Pakistan…

China tested its first stealth combat drone “Sharp Sword” on November 22, 2013, making China the fourth power capable of putting a stealth drone in the sky after the US, the European Union and Britain. Images posted online showed a sleek grey delta-wing aircraft apparently powered by a jet engine and resembling an American combat drone. According to Jane’s Defence Weekly, there are some indications China may already be exporting know-how to Pakistan given the design similarities between Chinese drones and Pakistan’s Shahpar UAV.

Pakistan

Having flown its first UAV in 1992, Pakistan’s drones currently use ‘line of sight’ radio communication rather than satellite communication. The Shahpar has a maximum range of 250 km. At present, Pakistan has an indigenous UAV capability but its drones cannot launch guided missiles. The laser guided technology helps it to identify targets and then relay that information to a helicopter gunship or combat aircraft. Pakistan first began weapons tests early 2012 with the Falco, an Italian drone that has been modified to carry rockets. The military has also been conducting similar tests with the country’s newest drone, the Shahpar that has a wingspan of seven metres and 50-kg payload capacity.

As Pakistan lacks laser-guided missiles like the Hellfire and advanced targeting system of the US Predator and Reaper drones, the military has been using unguided rockets that are much less accurate. While Hellfire missiles are said to have pinpoint accuracy, rockets used by Pakistan have Circular Error Probability (CEP) of 30 metres at best and an unexpected gust of wind could take them 300 metres from their intended target. Even if Pakistan possessed Hellfires, the missile’s weight and drag would be a challenge for the small indigenous drones. China has offered to sell Pakistan an armed drone which can carry two laser-guided missiles or bombs, but its capabilities are as yet unproven.

In 2004, Pakistan produced a UAV called Jasoos-II, a state-of-the-art UAV to be employed for real-time information…

The latest UAV built with Turkish and Chinese help, is called the “Burraq” named after a mythical flying horse. The PAF and government-owned defence conglomerate, the National Engineering and Scientific Commission, is flight-testing a new UAV to be equipped with a laser designator and laser-guided missiles. The current efforts are to upgrade various older UAVs with Chinese help. The military’s most capable UAV is the Selex Galileo Falco, which can laser-designate targets for other platforms but cannot deliver guided munitions.

Turkey, with whom Pakistan has an agreement to cooperate on UAV development, is seeking an armed UAV, preferably the Predator or MQ-9 Reaper. This UAV may someday be armed with the UMTAS infra-red guided anti-tank missile being developed by the Turkish firm Roketsan to arm the T-129 attack helicopter. According to Richard Fisher, China specialist and Senior Fellow at the International Assessment and Strategy Centre in Washington, Pakistan could simply produce China’s new CH-3 UCAV or co-produce any number of Chinese components to assemble a unique UCAV. He has also said that China has developed the unique AR-1, a 45-kilogramme, laser-guided attack missile, apparently designed specifically for light-winged or helicopter UCAVs.

Integrated Dynamics is a private company in Karachi with a 90,000 sq. ft. research facility. The Managing Director R.S Khan is a Masters in Aeronautics and Astronautics from MIT. According to him, drone technology is being developed in Pakistan for the last 20 years. The company’s customers include the Pakistan armed forces as well as foreign buyers from the US, Australia, Spain, Italy and France. Khan is confident that Pakistan can make an armed drone in a few years. Apart from Integrated Dynamics, East-West Infinity, Satuma and Global Industrial Defense Solutions (GIDS) are in the drone manufacturing business.

The US has been reported to have 163 UAV programmes in operation, compared to 50 by France, 31 by Israel and 25 by Pakistan…

There are several public sector companies involved in developing UAVs in Pakistan including the Pakistan Aeronautical Complex (PAC), Air Weapons Complex (AWC) and National Development Complex (NDC). The PAC’s Uqaab drone in use by the Pakistan Army is being upgraded with Chinese help to carry a weapons payload. Other PAC UAVs include the Bazz and Ababeel. AWC’s Bravo+ UAV is in use of the PAF. In 2008, the Pakistan Navy completed trials of the Austrian Schiebel Camcopter S-100 and Swedish Cybaero from a Pakistani frigate in the Arabian Sea.

The EWI’s Heliquad UAV is considered a stealth design because of its small size and Whisper Watch signals intelligence package, which is capable of picking up communication signals. ID’s Nishan Mk1 and TJ1000, Vision MK1 & MK2, Tornado, Border Eagle, Hornet, Hawk and Vector are also popular models employed by the armed forces for reconnaissance missions and target practice. Each model varies in range and endurance. Satuma’s UAVs with similar capabilities are called Flamingo, Jasoos and Mukhbar. For its part, the GIDS is developing the Huma-1 UAV and its own version of the Uqaab. None of these are reported to be capable of firing weapons. Moreover, none of the above-mentioned facilities are involved in large-scale production of UAVs.

On March 24, 2008, Pakistan announced the successful completion of flight tests of a new UAV, the Uqaab. The design looked very similar to models offered by a Pakistani firm, Integrated Dynamics, which has been producing smaller (under 500 lbs) UAVs for the government and commercial market since 1997. The Uqaab also appears similar to the US Army RQ-7B Shadow 200. Each Shadow 200 UAV platoon has 22 troops and operates three to four UAVs, plus the ground control equipment. Typically, each combat brigade has one Shadow UAV Platoon.

The Integrated Dynamics UAVs appear to operate in a manner similar to the Shadow 200, which is not high tech, just good engineering and quality manufacturing. The 350-pound Shadow 200 UAV costs $500,000 with an endurance of five and a half hours and carries day and night cameras. Flying at 15,000 feet, the Shadow can be safe from hostile ground fire in hostile territory. Integrated Dynamics has many export customers, including some in the US.

RQ-7B

In 2004, Pakistan produced a UAV called Jasoos-II, a state-of-the-art UAV to be employed for real-time information and situational awareness. Bravo+, variant of Jasoos II UAV was inducted in the PAF in 2004 and has proved to be a reliable system that is extremely easy to operate and maintain. It can take off and land conventionally from a runway under manual control. Once airborne, the UAV can fly autonomously whereas mission can be controlled using line-of-site data links. Jasoos-II can carry a variety of controllable payloads of up to 20kg with an endurance of over five hours. The standard variant of Jasoos-II is equipped with a day/low light camera pod capable of being steered 360 degrees in azimuth and +/- 105 degrees in elevation giving it the capability of panoramic viewing. Bravo+ is currently in production for the PAF as their primary work-horse for UAV Operations and Training Programme.

The US is the leader in UAV technology followed by Israel and European countries…

The Flamingo is a medium range UAV with an endurance of six to eight hours with a payload capacity of 30 kg. The Flamingo is equipped with an Avionics suite which controls the UAV during its beyond visual flight. The UAV flies a pre-programmed path which has been fed into the onboard mission computer without any assistance from the ground. The mission can be manually altered at any time during the flight by a short radio transmission from the ground. The Flamingo’s operational radius is only constrained by the line-of-site data links. In case of silent operation, the UAV can reach 400 km radial distance and return to base. The line replacement unit architecture of the UAV makes it easy to maintain in field conditions without relying heavily on backup support.

The Mukhbar, is a scaled-down version of Jassos II, to meet the operational requirement of a short-range reconnaissance UAV. The UAV fuselage and wings are manufactured using non-metallic materials thus minimising radar signature. The UAV is equipped with auto-pilot, telemetry, video transmitter and daylight camera. It can be operated using a portable ground control station with waypoint navigation within a radius of 30 to 50 km.

According to an Inter-Services Public Relations news release, Pakistan has successfully conducted a final test flight of its indigenously developed UAV “Uqaab”. A statement issued on the occasion said, “The performance of the Uqaab can be compared to any of modern state-of-the-art UAV in its category. The successful flight test is a reflection of Pakistan’s technical prowess in the field of UAV technology.”

The US has been trying to develop counter-drone technology by use of lasers to bring down the drones…

There is an effort to upgrade the Uqaab drone made by PAC to an armed drone, with the Chinese help. The Baaz and Ababeel are also made by PAC. Bravo+ made by AWC is used by PAF. The Pakistan Navy completed trials of the Austrian Schiebel Camcopter S-100 and Swedish Cybaero – from a Pakistani frigate in the Arabian Sea. The EWI’s Heliquad UAV is considered a stealth design because of its small size and Whisper Watch signals intelligence package, which is capable of picking up radio and other communication signals Satuma’s UAVs, with similar functionalities, are called Flamingo, Jasoos and Mukhbar. The GIDS is developing the Huma-1 UAV and its own version of the Uqaab. None of them are reported to be capable of firing arms. Moreover, none of the above-mentioned facilities are involved in large-scale, mass production of UAVs.

Conclusion

There is little doubt that UAVs are becoming increasingly important. The US is the leader in UAV technology followed by Israel and European countries. However, the gap between the US and other nations in the technology is enormous and cannot be closed any time soon. While UAVs that can fly for up to 60 hours have been developed, the Americans are working on a UAV that would be maintenance-free and have an endurance of up to five years, giving them an unlimited advantage in terms of reconnaissance. At the moment, however, one of the most advanced UAVs is the 12,110kg Northrop Grumman’s Global Hawk that has a range of more than 22,000 km. The US has been reported to have 163 UAV programmes in operation, compared to 50 by France, 31 by Israel and 25 by Pakistan.

High operational reliability is an essential prerequisite for UAVs. A good engine is the most difficult aspect in the designing of a UAV. Designers have to make sure that the engine can support the airframe and the UAV has a low signature through low vibration. It should be able to support long-endurance missions over the target. Another area of operational reliability for a UAV comes from its airframe, which should be able to support the mission in all types of conditions, especially rough weather. There is a flipside to the development of the drones globally. A recent report by the Rand Corporation warned that, in the future, terrorist groups might be able to buy small, armed drones, “Smaller systems could become the next IEDs – low-cost, low-tech weapons that are only of limited lethality individually but can cause considerable attrition when used in large numbers over time.”

The US has been trying to develop counter-drone technology by use of lasers to bring down the drones or develop systems to jam the radio signals used for guiding the drone. It holds an annual exercise called Black Dart which looks at ways to counter hostile drones, particularly small drones. But as on date, there is no counter-drone technology in the market.

1 2
Rate this Article
Star Rating Loader Please wait...
The views expressed are of the author and do not necessarily represent the opinions or policies of the Indian Defence Review.

About the Author

S Gopal

S Gopal, former head of Aviation Research Centre, New Delhi.

More by the same author

Post your Comment

2000characters left

5 thoughts on “Drones: The Game Changers in Future Wars

  1. I forgotten to mention a valid point in my comments. If we start using large scale so pilots will loose the job. Whether India afford to do it. We are spending millions of money to maintain the fighter planes helicopters etc. We can save large quantity of aviation fuel. Equipment necessary for a human pilot (such as the cockpit, armor, ejection seat, flight controls, and environmental controls for pressure and oxygen) are not needed, as the operator runs the vehicle from a remote terminal, resulting in a lower weight and size than a manned aircraft. Even engineering students in India are started making the same. We have the technical know how. The other day I watched a video showing a man made sea gull flying . by an engineering student. USA has developed man made insects and birds for bugging.

  2. We cannot come to a conclusion after analyzing the performance of UAV used by USA . UAVs are successful in Iraq and Afghanistan because the enemy do not have missile to use against the them. UAV is only a weapon carrying vehicle . USA developed U2 plane to spy USSR. But USSR was able to shot down the U2 plane at a height of 70000 feet. The fact is that none of the weapon carrying vehicles will be able to escape from multiple missiles.attacks. I have no doubt that whoever has got better missiles and its avionics. will be able to win the future wars. All our missiles have better range than any fighter planes and Helicopters. Majority of Pakistan installations are with in the striking distance of our missiles. Once the Regional Navigation Satellite System (IRNSS), is read we need not have to use UAV or planes for surveillance. So we are unnecessary spending billions of dollar on ships fighter air crafts and helicopters.

  3. On reading this article, two things straight come to my head are India will be able to manufacture different types of UAVs successfully under a JV / independently to deploy them in military and civil activities.

    So the so called future weapon can cause a lot of problem for. But on the other if India is selected as NATO country then there is a good chance to use drones. S Gopal I am not an expert but ordinary citizen. Correct me if I am wrong.

  4. Its good for India to create drones but I think we will not be able to use them in Pakistan or Afghanistan. Because I think never take an open war with an uneducated enemy or country. The biggest loss is ours. So the so called future weapon can cause a lot of problem for. But on the other if India is selected as NATO country then there is a good chance to use drones. S Gopal I am not an expert but ordinary citizen. Correct me if I am wrong.

  5. On reading this article, two things straight come to my head are India will be able to manufacture different types of UAVs successfully under a JV / independently to deploy them in military and civil activities. Further, India can generate good export business in this segment in due course of time. Second is that we really need to upgrade our defence capabilities very efficiently and effectively to remain relevant in the fast changing global space.

More Comments Loader Loading Comments